Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.
Combining two partstomakeawhole(use other

resourcestooe.g.eggs, shells, teddy bears, cars). \begin{tabular}{l}
Children to represent the cubes using dots or crosses. They

could put each part on a part whole model too.

4+3=7

Four is a part, 3is a partand the whole

is seven.
\end{tabular}

Regrouping to make10;usingtenframes and counters/cubes or using Numicon. $6+5$ 080	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
TO + Ousing base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $\begin{array}{r} 41 \\ \hline 49 \end{array}$
TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Children to representthe base 10inaplace value chart.	Looking for ways to make 10.

Conceptual variation; different ways to ask children to solve 21 + 34

	Word problems: In year3, there are 21 children andin year 4, there are 34 children. How many children intotal? $21+34=55$. Prove it	$\begin{aligned} & \begin{array}{c} 21 \\ +34 \\ -\overline{21+34} \end{array}= \\ & =21+34 \end{aligned}$ Calculate the sum of twenty-one and thirty-four.	Missing digit problems:	
			10s	1s
21 34			(-) (-)	(1)
			(-) (-)	?
			?	5

\square

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Finding the difference (using cubes, Numicon or other objects can also be used).

Calculate the difference between 8 and 5 .

Making 10 using ten frames.
14-5

Column method using base 10 . 48-7

Children to draw the cubes/other concrete objects which they haveusedorusethebarmodelto illustratewhat they need tocalculate.

Children to present the ten frame pictorially and discuss what they did to make 10.

Children to represent the base 10 pictorially.

Findthe difference between8 and 5.
$8-5$, the difference is
Children to explore why
$9-6=8-5=7-4$ have the same difference.

Childrento show how they canmake 10 by partitioning the subtrahend.

$14-4=10$
$10-1=9$
Columnmethodorchildrencould count back7

Column method using base 10 and having to exchange.
41-26

Represent the base 10 pictorially, remembering to show the exchange.

Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41=30+11$.

Calculation policy:Multiplication

Key language: groups of, double, repeated addition, times, multiplied by, lots of, equal groups, array, row, column

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially. 00 $\begin{aligned} & 00000 \\ & 00000 \end{aligned}$ 00	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Partition to multiply using Numicon or base 10 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. A number line can also be used

Calculation policy: Division

Keylanguage: share, group, divide, divided by, half.

2d \div 1d with remainders using lollipop sticks.
$13 \div 4$
Use of lollipop sticks to form wholes-squares are made because we are dividing by 4 .

There are 3 whole squares, with 1 left over.

There are 3 whole squares, with 1 left over.
$13 \div 4-3$ remainder 1
Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
' 3 groups of 4 , with 1 left over'

